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Abstract — New bridgeless single-phase ac–dc power factor 

correction  (PFC) rectifiers based on Cuk  topology are 

proposed.The  absence of an  input diode bridge and the presence  

of  only two  semiconductor  switches in the current  flowing path  

during each interval of the switching cycle result in less 

conduction losses and an improved thermal management 

compared to the conventional Cuk PFC rectifier. The proposed 

topologies are designed to work in discontinuous conduction 

mode (DCM) to achieve almost a unity power factor and low total 

harmonic distortion of the input current. The DCM operation 

gives additional advantages such as zero-current turn-ON in the 

power switches, zero-current turn-OFF in the output diode, and 

simple control circuitry. Performance comparisons between the 

proposed and conventional Cuk PFC rectifiers are performed 

based on circuit simulations. Simulation results for a 18W/12Vdc 

at 120V line voltage to evaluate the performance of the proposed 

bridgeless PFC rectifiers are obtained. 

 

Index Terms—Bridgeless rectifier, Cuk converter, low conduction 

losses, power factor correction (PFC), rectifier, single-ended 

primary-inductor converter (SEPIC) converter, total harmonic 

distortion (THD), Discontinuous conduction mode (DCM). 

 

I.INTRODUCTION 

  POWER supplies with active power factor 

correction(PFC) techniques are becoming necessary for many 

types of electronic equipment to meet harmonic regulations 

and standards,such as the IEC 61000-3-2. Most of the PFC 

rectifiers utilize a boost converter at their front end. However, 

a conventional PFC scheme has lower efficiency due to 

significant losses in the diode bridge. A conventional PFC 

Cuk rectifier is shown in Fig. 1; the current flows through two 

rectifier bridge diodes and the power switch (Q) during the 

switch ON-time, and through two rectifier bridge diodes and 

the output diode (Do) during the switch OFF-time. Thus, 

during each switching cycle, the current flows through three 

power semiconductor devices. As a result, a significant 

conduction loss, caused by the forward voltage drop across the 

bridge diode, would degrade the converter’s efficiency. In an 

effort to maximize the power supply efficiency, the number of 

semiconductors generating losses is reduced by essentially 

eliminating the full bridge input diode rectifier. 

                        

 

 

 

 

 

 

 

 

 

                         Fig.1.Conventional Cuk PFC Converter. 

 

  A bridgeless PFC rectifier allows the current to flow 

through a minimum number of switching devices compared to 

the conventional PFC rectifier. Accordingly,the converter 

conduction losses can be significantly reduced and higher 

efficiency can be obtained, as well as cost savings. Recently, 

several bridgeless PFC rectifiers have been introduced to 

improve the rectifier power density and/or reduce noise 

emissions via soft-switching techniques or coupled magnetic 

topologies [1]–[5].On the other hand, the bridgeless boost 

rectifier [7]–[24] has the same major practical drawbacks as 

the conventional boost converter such as the dc output voltage 

is higher than the peak input voltage, lack of galvanic 

isolation, and high start-up inrush currents. Therefore, for low-

output voltage applications, such as telecommunication or 

computer industry, an additional converter or an isolation 

transformer is required to step-down the voltage.  

  To overcome these drawbacks, several bridgeless 

topologies which are suitable for step-up/step-down 

applications have been recently introduced. However, the   

proposed topology in still suffers from having three 

semiconductors in the current conduction path during each 

switching cycle. Similar to the boost converter, the SEPIC 

converter has the disadvantage of discontinuous output current 

resulting in a relatively high output ripple. A bridgeless buck 

PFC rectifier was recently proposed for step-down 

applications. However, the input line current cannot follow the 
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input voltage around the zero crossings of the input line 

voltage; besides, the output to input voltage ratio is limited to 

half. Also, buck PFC converter results in an increased total 

harmonic distortion (THD) and a reduced power factor. 

II. PROPOSED BRIDGELESS CUK PFC RECTIFIERS 

The Cuk converter offers several advantages in PFC 

applications,such as easy implementation of transformer 

isolation,natural protection against inrush current occurring at 

start-up or overload current, lower input current ripple, and 

less electromagnetic interference (EMI) associated with the 

discontinuous conduction mode (DCM) topology. Unlike the 

SEPIC converter, the Cuk converter has both continuous input 

and output currents with a low current ripple. Thus, for 

applications,which require a low current ripple at the input and 

output ports of the converter, the Cuk converter seems to be a 

potential candidate in the basic converter topologies.In this 

paper, three topologies of bridgelessCuk PFC rectifiers are 

proposed. The proposed rectifiers are compared based on 

efficiency, components count, harmonics, gain capability, and 

driver circuit.  

The proposed bridgeless Cuk PFC rectifiers are   

shown in Fig.2.The proposed topologies are formed by  

connecting two dc–dc Cuk converters, one for each half-line 

period (T/2) of the input voltage. It should be mentioned here 

that the topology of Fig.3(a) was listed  as a new converter 

topology. The operational circuits during the positive and 

negative half-line period for the proposed bridgeless Cuk 

rectifiers of Fig. 3(a)–(b) are shown in Fig. 3 respectively. 

Note that by referring to Fig.3,there are one or two 

semiconductor(s) in the current flowing path; hence, the 

current stresses in the active and passive switches are further 

reduced and the circuit efficiency is improved compared to the 

conventional Cuk rectifier. In addition, Fig. 3(a) and (b) shows 

that one rail of the output voltage bus is always connected to 

the input ac line through the slow-recovery diodes Dp and Dn 

or directly as in the case of the topology of Fig. 3(b). Thus, the 

proposed topologies do not suffer from the high common-

mode EMI noise emission problem and have common-mode 

EMI performance similar to the conventional PFC topologies. 

Consequently, the proposed topologies appear to be promising 

candidates for commercial PFC products. 

 

             
        Fig. 2. Proposed bridgeless Cuk PFC rectifiers.                                                                                                        

The proposed bridgeless rectifiers of Fig.2 utilize two power 

switches (Q1 and Q2). However, the two power switches can 

be driven by the same control signal, which significantly 

simplifies the control circuitry. Compared to the conventional 

Cuk topology, the structure of the proposed topologies utilizes 

one additional inductor, which is often described as a 

disadvantage in terms of size and cost. However, a better 

thermal performance can be achieved with the two inductors 

compared to a single inductor.It should be mentioned here that 

the three inductors in the proposed topologies can be coupled 

on the same magnetic core allowing considerable size and cost 

reduction. Additionally,the “near zero-ripple-current” 

condition at the input or output port of the rectifier can be 

achieved without compromising performance. 

   

III. PRINCIPLE OF OPERATION AND THEORETICAL 

ANALYSIS 

 

A. Principle of Operation 

 

The  proposed  bridgeless type Cuk  rectifier of  Fig.2  

will be considered in this study. Type 2 (SEPIC converter) is 

similar to type 3, except for the output stage stresses. The 

SEPIC version of type 2 has been analyzed theoretically. The 

analysis assumes that the converter is operating at a steady 

state in addition to the following assumptions: pure sinusoidal 

input voltage, ideal lossless components, and all capacitors are 

large enough such that their switching voltage ripples are 

negligible during the switching period Ts. Moreover, the 

output filter capacitor Co (Co1 and Co2 for topology 2) has a 

large capacitance such that the voltage across it is constant 

over the entire line period. Referring to Fig. 3(a), during the 

positive half-line cycle, the first dc–dc Cuk circuit, L1–Q1–

C1–Lo 1–Do1 , is active through diode Dp , which connects 

the input ac source to the output.  During the negative half-line 

cycle, as shown in Fig. 3(b), the second dc–dc Cuk circuit, 

L2–Q2 -C2–Lo 2–Do2, is active through diode Dn , which 

connects the input ac source to the output.Due to the 

symmetry of the circuit, it is sufficient to analyze the circuit 

during the positive half cycle of the input voltage.Moreover, 

the operation of the proposed rectifiers of Fig.2 will be 

described assuming that the three inductors are operating  in 

DCM. By operating the rectifier in DCM, several advantages 

can be gained. These advantages include natural near-unity 

power factor, the power switches are turned ON at zero 

current, and the output diodes (Do1 and Do2 ) are turned OFF 

at zero current.Thus, the losses due to the turn-ON switching 

and the reverse recovery of the output diodes are considerably 

reduced.Conversely, DCM operation significantly increases 

the conduction losses due to the increased current stress 

through circuit components. As a result, this leads to one 

disadvantage of the DCM operation, which limits its use to 

low-power applications (<300 W) similar to the conventional 

Cuk converter, the circuit operation in DCM can be divided 
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into three distinct operating stages during one switching 

period Ts. Equivalent circuits over a switching period Ts in 

the positive and negative half-line period of input line voltage  

is shown in Fig.3(a-b) shows  DCM operation of switch over 

switching cycle during the positive & negative half cycle 

period of the input voltage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3.Equivalent circuit of proposed bridgeless PFC Cuk 

rectifier Fig.3(a) During positive half-line period.Fig.3(b) 

During negative half- line period of input voltage. 

 

 Stage 1[t0, t1 ], [Fig. 4(a)]: This stage starts when 

the switch Q1 is turned ON. Diode Dp is forward biased by 

the inductor current iL1 . As a result, the diode Dn is reverse 

biased by the input voltage. The output diode Do1 is reverse  

biased by  the reverse voltage (vac + Vo ), while Do2 is 

reverse biased by the output voltage Vo. In this stage, the 

currents through inductors L1 and Lo1 increase linearly with 

the input voltage, while the current through Lo2 is zero due to 

the constant voltage across C2. The inductor currents are 

given as                                                             

, 1,01
di Vac

n
dt Ln

                                       (1)    

 

 Accordingly, the peak current through the active 

switch Q1 is given by 

                     1, 1
Vm

IQ pk D Ts
Le

                                  (2)      

where Vm is the peak amplitude of the input voltage 

vac , D1 is the switch duty cycle, and Le is the parallel 

combination of inductors L1 and Lo1. 

Stage 2[t1, t2 ] [Fig. 4(b)]: This stage starts when the 

switch Q1 is turned OFF and the diode Do1 is turned ON 

simultaneously providing a path for the inductor currents iL1 

and iLo1. The diode Dp remains conducting to provide a path 

for iL1. Diode Do2 remains reverse biased during this interval. 

This interval ends when iDo1 reaches zero and Do1 becomes 

reverse biased. Note that the diode Do1 is switched OFF at 

zero current. Similarly,the inductor currents of L1 and Lo1 

during this stage can be represented as follows 

                                               

                                                                                                     

                                    
0

, 1,01
di V

n
dt Ln

                     (3) 

 

 Stage 3[t2, t3 ] [Fig. 4(c)]: During this interval, only 

the diode Dp conducts to provide a path for iL1 . Accordingly, 

the inductors in this interval behave as constant current 

sources. Hence, the voltage across the three inductors is zero. 

The capacitor C1 is being charged by the inductor current iL1. 

This period ends when Q1 is turned ON.  

 

By applying inductor volt-second across L1 and Lo1 , 

the normalized length of the second stage period can be 

expressed as follows  

.                                   
1

2 sin
D

D t
M

                              (4)      

                     

where ω is the line angular frequency, and M is the 

voltage conversion ratio (M = Vo /Vm). 

 

 Since the diode Dp continuously conducts 

throughout the entire switching period, the average voltage 

across C2 is equal to the output voltage Vo. As a result, a 

negligible ac current will flow through C2 and Lo2 . 

Therefore, the current through L2 during the positive half 

cycle of the input voltage is equal to the negative current 

through the body diode of Q2 . It should be noted that the 

body diode of the inactive switch Q2 is always conducting 

current during the positive half cycle of the input voltage. This 

is due to the low impedance of the input inductors (L1 and L2) 

at the line frequency. Therefore, the input diode Dp and body 

diode of Q2 appear in parallel configuration to share the return 

current. A large portion of the return current will pass through 

the diode that has a lower voltage drop. The efficiency of the 

converter can be slightly improved by using synchronous 

rectification to turn ON the switch Q2 during the positive half 
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cycle of the input voltage, which eliminates its body-diode 

conduction.  

 

B. Voltage Conversion Ratio M 

The voltage conversion ratio M in terms of the 

converter parameters can be obtained by applying the power 

balance principle. 

 Similar to the conventional Cuk PFC rectifier, shows 

that  the input port of the proposed rectifier obeys Ohm’s law. 

Thus, the input current is sinusoidal and in phase with the 

input voltage. Hence, the power stage circuit of the converter 

of Fig. 4 can be represented by its large signal averaged model 

This model can be implemented in a simulation program to 

predict the steady state and large signal dynamic 

characteristics of the real circuit. Furthermore, the averaged 

model can greatly reduce the long computation time when it is 

implemented in simulation software. 

 

                                      
0

2Re

V Rl
M

Vm
                       (5)               

 

 It should be noted that the voltage gain  is also valid 

for the other two proposed topologies. However, the effective 

inductance (Le ) varies from one topology to another.  

 

C. Boundaries Between Continuous Conduction 

Mode and DCM 

 Referring to the diode Do1 current waveform in 

Fig.4, the DCM operation mode requires that the sum of the 

switch duty cycle and the normalized switch-OFF time length 

be less than one, Hence, the minimum and maximum values of 

Ke -crit is given by 

 

               
2

1
min

2( 1)
Ke crit

M
  


                         (6) 

respectively. Therefore, for values of Ke < Ke -crit min, the 

converter always operates in DCM, and it operates in the 

continuous conduction mode (CCM) for values of Ke > Ke -

crit max. However for values of Ke -crit min < Ke < Ke -crit 

max, the converter operates in both modes: CCM near the 

peak value of the input line voltage and DCM near the zero 

crossing of the input line voltage. 

 

D. Capacitor Selection 

  The energy transfer capacitors C1 and C2 are 

important elements in the proposed Cuk topologies since their 

values greatly influence the quality of input line current. 

Capacitors C1 and C2 must be chosen such that their steady-

state voltages follow the shape of the rectified input ac line 

voltage waveform plus the output voltage with minimum 

switching voltage ripple as possible .Also, the values of C1 

and C2 should not cause low-frequency oscillations with the 

converter inductors. In a practical design,the energy transfer 

capacitors C1 and C2 are determined based on inductors L1 , 

Lo values (assuming L1 = L2 and Lo 1 = Lo 2 = Lo ) such that 

the resonant frequency (fr ) during DCM stage is higher than 

the line frequency(fl )and well below the switching frequency  

fs.Thus 

                          1f fr fs                                             (7)       

Where     
1

2 1( 1 0)
fr

C L L



                                  ( 8)              

              

 On the other hand, the output capacitor Co needs to 

be sufficiently large to store minimum energy required for 

balancing the difference between the time varying input power 

and constant load power.          
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Fig.4.  Topological stages over one switching period Ts for the 

converter of Fig.3. Fig.4(a) Switch Q1 is ON.Fig.4(b) Switch 

Q1 is OFF.Fig.4(c)DCM. 

 

IV.SIMULATION CIRCUITS AND ITS RESULTS 

 

 
Fig.5.Simulation diagram of bridgeless PFC Cuk rectifier. 

  The proposed bridgeless PFC Cuk topology has been 

simulated using MATLAB for the following input and output 

data specifications: Vac = 120 , Vo = 12V, Pout = 18W, and   

fs = 50 kHz.Fig.6(a) shows the simulated power factor curve 

of bridgeless cuk converter. Fig. 6(b) shows the simulated  

input voltage and current waveforms which are in phase at  

each other during the full-load condition. Fig. 6(c) shows 

source voltage & diode current. Fig.6(d) shows current 

through IGBT switch Q1 and Q2.Fig.6(e) shows current 

through the inductor L1 and L2. Fig. 6(f) shows voltage 

through the energy transfer capacitor. Fig. 6(g), which shows 

 the analysis of THD values for the input line current 

waveform with consideration of number of line current cycles 

from one to eight . 

 

                                      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig.6 (a) Unity power factor 

curve of bridgeless cuk 

converter 

Fig.6 (b) Source voltage and 

source current of bridgeless 

cuk converter 

Fig.6(e) Source voltage and input         

inductor current of  bridgeless      

cuk converter 

 

Fig.6 (f) Source voltage and energy 

transfer capacitor voltage of bridgeless 

cuk converter 

 

No of cycle =8, THD = 1.95% No of cycle =7, THD = 1.89% 

No of cycle =6,THD = 1.82% No of cycle =5, THD = 1.75% 

No of cycle =4, THD = 1.67% No of cycle =3,THD = 1.58% 

Fig.6 (c) Source voltage and 

diode current of bridgeless cuk 

converter 

Fig.6 (d) Source voltage and 

IGBT current of bridgeless 

cuk converter 
No of cycle =2, THD = 1.49% No of cycle =1, THD = 1.41% 

  

  

 

 

 
No of cycle =8, THD = 1.95% 
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V. CONCLUSION 

 

The proposed single-phase ac–dc bridgeless rectifiers  

based  on   Cuk topology are presented and discussed in this 

paper. The  validity and performance of the proposed 

topologies are verified  by simulation  results. Due to the 

lower conduction and switching losses, the proposed 

topologies can further improve the conversion efficiency when 

compared with the conventional Cuk PFC rectifier. Namely, to 

maintain the same efficiency, the proposed circuits can operate 

with a higher switching frequency. Thus, additional reduction 

in the size of the PFC inductor and EMI filter could be 

achieved. The proposed bridgeless topologies can improve the 

efficiency by approximately 1.4% compared to the 

conventional PFC Cuk rectifier. The performance of 

bridgeless types cuk rectifier of the proposed topologies was 

verified on a 18W PMDC motor in MATLAB circuit. The 

measured efficiency of the bridgeless cuk rectifier at 120 

Vrms line and full load is above 93% with THD below 2%.   
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